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Definition

Adaptive bitonic sorting is a sorting algorithm suitable
for implementation on EREW parallel architectures.
Similar to bitonic sorting, it is based onmerging, which
is recursively applied to obtain a sorted sequence. In
contrast to bitonic sorting, it is data-dependent. Adap-

tive bitonic merging can be performed inO( np ) parallel
time, p being the number of processors, and executes
only O(n) operations in total. Consequently, adaptive

bitonic sorting can be performed in O( n log np ) time,
which is optimal. So, one of its advantages is that it exe-
cutes a factor of O(logn) less operations than bitonic
sorting. Another advantage is that it can be imple-
mented e5ciently on modern GPUs.

Discussion

Introduction

6is chapter describes a parallel sorting algorithm,
adaptive bitonic sorting [], that o7ers the following
bene8ts:

● It needs only the optimal total number of compar-
ison/exchange operations, O(n logn). ● 6e hidden constant in the asymptotic number of
operations is less than in other optimal parallel sort-
ing methods. ● It can be implemented in a highly parallel manner
on modern architectures, such as a streaming archi-
tecture (GPUs), even without any scatter operations,
that is, without random access writes.

One of the main di7erences between “regular” bitonic 
sorting and adaptive bitonic sorting is that regular 
bitonic sorting is data-independent, while adaptive 
bitonic sorting is data-dependent (hence the name). 

As a consequence, adaptive bitonic sorting cannot 
be implemented as a sorting network, but only on archi- 
tectures that o7er some kind of 9ow control. Nonethe- 
less, it is convenient to derive the method of adaptive 
bitonic sorting from bitonic sorting. 

Sorting networks have a long history in computer 
science research (see the comprehensive survey []). 
One reason is that sorting networks are a convenient 
way to describe parallel sorting algorithms on CREW- 
PRAMs or even EREW-PRAMs (which is also called 
PRAC for “parallel random access computer”). 

In the following, let n denote the number of keys 
to be sorted, and p the number of processors. For the 
sake of clarity, n will always be assumed to be a power 
of . (In their original paper [], Bilardi and Nicolau 
have described how to modify the algorithms such that 
they can handle arbitrary numbers of keys, but these 
technical details will be omitted in this article.) 

6e 8rst to present a sorting network with optimal 
asymptotic complexity were Ajtai, Komlós, and Sze- 
merédi []. Also, Cole [] presented an optimal parallel 
merge sort approach for the CREW-PRAM as well as 
for the EREW-PRAM. However, it has been shown that 
neither is fast in practice for reasonable numbers of keys 
[, ]. 

In contrast, adaptive bitonic sorting requires less 
than n logn comparisons in total, independent of the 
number of processors. On p processors, it can be imple- 

mented in O( n log np ) time, for p ≤ n
log n . 

Even with a small number of processors it is e5- 
cient in practice: in its original implementation, the 
sequential version of the algorithm was at most by a 
factor . slower than quicksort (for sequence lengths 
up to ) []. 

David Padua (ed.), Encyclopedia of Parallel Computing, DOI ./----,
© Springer Science+Business Media LLC 
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 A Adaptive Bitonic Sorting

Fundamental Properties

One of the fundamental concepts in this context is the
notion of a bitonic sequence.

De!nition  (Bitonic sequence) Let a = (a, . . . ,an−)
be a sequence of numbers.6en, a is bitonic, i7 it mono-
tonically increases and then monotonically decreases,
or if it can be cyclically shi:ed (i.e., rotated) to
become monotonically increasing and then monoton-
ically decreasing.

Figure  shows some examples of bitonic sequences.
In the following, it will be easier to understand

any reasoning about bitonic sequences, if one consid-
ers them as being arranged in a circle or on a cylinder:
then, there are only two in9ection points around the cir-
cle. 6is is justi8ed by De8nition . Figure  depicts an
example in this manner.

As a consequence, all index arithmetic is understood 
modulo n, that is, index i + k ≡ i + kmod n, unless 
otherwise noted, so indices range from  through n− . 

Asmentioned above, adaptive bitonic sorting can be 
regarded as a variant of bitonic sorting, which is in order 
to capture the notion of “rotational invariance” (in some 
sense) of bitonic sequences; it is convenient to de8ne the 
following rotation operator. 

De!nition  (Rotation) Let a = (a, . . . ,an−) and 
j ∈ N. We de8ne a rotation as an operator Rj on the 
sequence a: 

Rja = (aj,aj+ , . . . ,aj+n−) 

6is operation is performed by the network shown 
in Fig. . Such networks are comprised of elementary 
comparators (see Fig. ). 

Two other operators are convenient to describe 
sorting. 

i
1 n

i
1 n

i
1 n

Adaptive Bitonic Sorting. Fig.  Three examples of sequences that are bitonic. Obviously, the mirrored sequences (either
way) are bitonic, too

Adaptive Bitonic Sorting. Fig.  Left: according to their definition, bitonic sequences can be regarded as lying on a
cylinder or as being arranged in a circle. As such, they consist of one monotonically increasing and one decreasing part.
Middle: in this point of view, the network that performs the L and U operators (see Fig. ) can be visualized as a wheel of
“spokes.”Right: visualization of the effect of the L and U operators; the blue plane represents the median



Encyclopedia of Parallel Computing “00101” — 2011/4/16 — 13:39 — Page 3 — #4

Co
rre
ct
ed

Pr
oo
f

Adaptive Bitonic Sorting A 

a

b

min(a,b)

max(a,b)

a

b

max(a,b)

min(a,b)

Adaptive Bitonic Sorting. Fig.  Comparator/exchange
elements

Adaptive Bitonic Sorting. Fig.  A network that performs
the rotation operator

Adaptive Bitonic Sorting. Fig.  A network that performs
the L and U operators

De!nition  (Half-cleaner) Let a = (a, . . . ,an−).

La = (min(a,a n

) , . . . ,min(a n

 −,an−)) ,

Ua = (max(a,a n

) , . . . ,max(a n

 −,an−)) .

In [], a network that performs these operations
together is called a half-cleaner (see Fig. ).

It is easy to see that, for any j and a,

La = R−j mod n

LRja, ()



and

Ua = R−j mod n

URja. ()

6is is the reason why the cylinder metaphor is valid.

6e proof needs to consider only two cases: j = n
 

and  ≤ j < n
 . In the former case, Eq.  becomes La = 

LR n

a, which can be veri8ed trivially. In the latter case, 

Eq.  becomes 

LRja = (min(aj,aj+ n

) , . . . ,min(a n

 −,an−) , . . . , 

min(aj− ,aj−+ n

)) 

= RjLa. 

6us, with the cylindermetaphor, the L andU oper- 
ators basically do the following: cut the cylinder with 
circumference n at any point, roll it around a cylinder 
with circumference n

 , and perform position-wise the 
max and min operator, respectively. Some examples are 
shown in Fig. . 

6e following theorem states some important prop- 
erties of the L and U operators. 

%eorem  Given a bitonic sequence a, 

max{La} ≤ min{Ua} . 

Moreover, La and Ua are bitonic too. 

In other words, each element of La is less than or 
equal to each element of Ua. 

6is theorem is the basis for the construction of the 
bitonic sorter []. 6e 8rst step is to devise a bitonic 
merger (BM). We denote a BM that takes as input 
bitonic sequences of length nwith BMn . A BM is recur- 
sively de8ned as follows: 

BMn(a) = (BM n

(La), BM n


(Ua) ) . 

6e base case is, of course, a two-key sequence, which 
is handled by a single comparator. A BM can be easily 
represented in a network as shown in Fig. . 

Given a bitonic sequence a of length n, one can show 
that 

BMn(a) = Sorted(a). () 

It should be obvious that the sorting direction can be 
changed simply by swapping the direction of the ele- 
mentary comparators. 

Coming back to the metaphor of the cylinder, the 
8rst stage of the bitonic merger in Fig.  can be visual- 
ized as n

 comparators, each one connecting an element 
of the cylinder with the opposite one, somewhat like 
spokes in a wheel. Note that here, while the cylinder can 
rotate freely, the “spokes” must remain 8xed. 

Froma bitonicmerger, it is straightforward to derive 
a bitonic sorter, BSn, that takes an unsorted sequence, 
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i
1 n/2

a

Ua

La

i
1 nn/2

a

Ua

La

Adaptive Bitonic Sorting. Fig.  Examples of the result of the L and U operators. Conceptually, these operators fold the
bitonic sequence (black), such that the part from indices n

 +  through n (light gray) is shifted into the range  through n


(black); then, L and U yield the upper (medium gray) and lower (dark gray) hull, respectively

BM(n)

BM(n/2)

La

Ua

0

n/2-1

n–1

n/2B
ito
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S
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d

1 stage

BM(n/2)

Adaptive Bitonic Sorting. Fig.  Schematic, recursive diagram of a network that performs bitonic merging

and produces a sorted sequence either up or down.
Like the BM, it is de8ned recursively, consisting of two
smaller bitonic sorters and a bitonic merger (see Fig. ).
Again, the base case is the two-key sequence.

Analysis of the Number of Operations of

Bitonic Sorting

Since a bitonic sorter basically consists of a number of
bitonic mergers, it su5ces to look at the total number of
comparisons of the latter.

6e total number of comparators, C(n), in the
bitonic merger BMn is given by:

C(n) = C(n

) + n


, with C() = ,

which amounts to

C(n) = 

n logn.

As a consequence, the bitonic sorter consists of 
O(n log n) comparators. 

Clearly, there is some redundancy in such a net- 
work, since n comparisons are su5cient to merge two 
sorted sequences. 6e reason is that the comparisons 
performed by the bitonic merger are data-independent. 

Derivation of Adaptive Bitonic Merging 

6e algorithm for adaptive bitonic sorting is based on 
the following theorem. 

%eorem  Let a be a bitonic sequence. 6en, there is 
an index q such that 

La = (aq, . . . ,aq+ n
 −) () 

Ua = (aq+ n

, . . . ,aq−) () 

(Remember that index arithmetic is always mod- 
ulo n.) 
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Adaptive Bitonic Sorting. Fig.  Schematic, recursive diagram of a bitonic sorting network

0 n-1q+n/2 q

m

U L

Adaptive Bitonic Sorting. Fig.  Visualization for the
proof of Theorem 

6e following outline of the proof assumes, for the
sake of simplicity, that all elements in a are distinct. Let
m be the median of all ai, that is, n elements of a are less
than or equal to m, and n

 elements are larger. Because
of6eorem ,

max{La} ≤ m <min{Ua} .

Employing the cylinder metaphor again, the median
m can be visualized as a horizontal plane z = m that
cuts the cylinder. Since a is bitonic, this plane cuts the
sequence in exactly two places, that is, it partitions the
sequence into two contiguous halves (actually, any hor-
izontal plane, i.e., any percentile partitions a bitonic
sequence in two contiguous halves), and since it is
the median, each half must have length n

 . 6e indices

where the cut happens are q and q + n
 . Figure  shows 

an example (in one dimension). 
6e following theorem is the 8nal keystone for the 

adaptive bitonic sorting algorithm. 

%eorem  Any bitonic sequence a can be partitioned 
into four subsequences (a, a , a, a) such that either 

(La,Ua) = (a, a , a, a) () 

or 

(La,Ua) = (a , a, a, a). () 

Furthermore, 

∣a ∣ + ∣a∣ = ∣a ∣ + ∣a ∣ = n

, () 



∣a∣ = ∣a ∣ , () 

and 

∣a ∣ = ∣a∣ , () 

where ∣a∣ denotes the length of sequence a. 

Figure  illustrates this theorem by an example. 
6is theorem can be proven fairly easily too: the 

length of the subsequences is just q and n
 −q, where q is 

the same as in 6eorem . Assuming that max{a} < 
m < min{a}, nothing will change between those 
two subsequences (see Fig. ). However, in that case 
min{a} > m > max{a}; therefore, by swap- 
ping a and a (which have equal length), the bounds 
max{(a, a)} < m < min{a, a)} are obtained. 6e 
other case can be handled analogously. 
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0a n – 1n/2 0 n – 1n/2
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Adaptive Bitonic Sorting. Fig.  Example illustrating Theorem 

Remember that there are n
 comparator-and-

exchange elements, each of which compares ai and
ai+ n


. 6ey will perform exactly this exchange of sub-

sequences, without ever looking at the data.
Now, the idea of adaptive bitonic sorting is to 8nd

the subsequences, that is, to 8nd the index q that marks
the border between the subsequences. Once q is found,
one can (conceptually) swap the subsequences, instead
of performing n

 comparisons unconditionally.
Finding q can be done simply by binary search

driven by comparisons of the form (ai,ai+ n

).

Overall, instead of performing n
 comparisons in the

8rst stage of the bitonic merger (see Fig. ), the adaptive
bitonic merger performs log( n ) comparisons in its 8rst
stage (although this stage is no longer representable by
a network).

Let C(n) be the total number of comparisons per-
formed by adaptive bitonic merging, in the worst case.
6en

C(n) = C(n

) + log(n) = k−∑

i=
i log( n

i
) ,

with C() = ,C() =  and n = k .6is amounts to 

C(n) = n − logn − . 

6e only question that remains is how to achieve the 
data rearrangement, that is, the swapping of the subse- 
quences a and a or a and a, respectively, without 
sacri8cing the worst-case performance of O(n). 6is 
can be done by storing the keys in a perfectly balanced 
tree (assuming n = k), the so-called bitonic tree. (6e 
tree can, of course, store only k −  keys, so the n-th 
key is simply stored separately. )6is tree is very similar 
to a search tree, which stores a monotonically increas- 
ing sequence: when traversed in-order, the bitonic tree 
produces a sequence that lists the keys such that there 
are exactly two in9ection points (when regarded as a 
circular list). 

Instead of actually copying elements of the sequence 
in order to achieve the exchange of subsequences, the 
adaptive bitonic merging algorithm swaps O(logn) 
pointers in the bitonic tree.6e recursion thenworks on 
the two subtrees. With this technique, the overall num- 
ber of operations of adaptive bitonic merging is O(n). 
Details can be found in []. 

Clearly, the adaptive bitonic sorting algorithmneeds 
O(n logn) operations in total, because it consists of 
log(n)many complete merge stages (see Fig. ). 
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It should also be fairly obvious that the adaptive
bitonic sorter performs an (adaptive) subset of the com-
parisons that are executed by the (nonadaptive) bitonic
sorter.

The Parallel Algorithm

So far, the discussion assumed a sequential implemen-
tation. Obviously, the algorithm for adaptive bitonic
merging can be implemented on a parallel architecture,
just like the bitonic merger, by executing recursive calls
on the same level in parallel.

Unfortunately, a naïve implementation would
require O(log n) steps in the worst case, since there
are log(n) levels.6e bitonic merger achieves O(logn)
parallel time, because all pairwise comparisons within
one stage can be performed in parallel. But this is not
straightforward to achieve for the log(n) comparisons
of the binary-search method in adaptive bitonic merg-
ing, which are inherently sequential.

However, a careful analysis of the data dependencies
between comparisons of successive stages reveals that
the execution of di7erent stages can be partially over-
lapped []. As La,Ua are being constructed in one stage
bymoving down the tree in parallel layer by layer (occa-
sionally swapping pointers); this process can be started
for the next stage, which begins one layer beneath the
onewhere the previous stage began, before the8rst stage
has 8nished, provided the 8rst stage has progressed “far
enough” in the tree. Here, “far enough” means exactly
two layers ahead.

6is leads to a parallel version of the adaptive bitonic

merge algorithm that executes in time O( np ) for p ∈

O( n
log n), that is, it can be executed in (logn) parallel

time.
Furthermore, the data that needs to be communi-

cated between processors (either via memory, or via
communication channels) is in O(p).

It is straightforward to apply the classical sorting-
by-merging approach here (see Fig. ), which yields the
adaptive bitonic sorting algorithm. 6is can be imple-
mented on an EREW machine with p processors in

O( n log np ) time, for p ∈ O( n
log n).

A GPU Implementation

Because adaptive bitonic sorting has excellent scalabil-
ity (the number of processors, p, can go up to n/ log(n))

and the amount of inter-process communication is 
fairly low (only O(p)), it is perfectly suitable for imple- 
mentation on stream processing architectures. In addi- 
tion, although it was designed for a random access 
architecture, adaptive bitonic sorting can be adapted to 
a stream processor, which (in general) does not have the 
ability of random-access writes. Finally, it can be imple- 
mented on a GPU such that there are only O(log(n)) 
passes (by utilizing O(n/ log(n)) (conceptual) proces- 
sors), which is very important, since the number of 
passes is one of the main limiting factors on GPUs. 

6is section provides more details on the imple- 
mentation on a GPU, called “GPU-ABiSort” [, ]. 
For the sake of simplicity, the following always assumes 

Algorithm : Adaptive construction of La and Ua
(one stage of adaptive bitonic merging)
input : Bitonic tree, with root node r and extra

node e, representing bitonic sequence a
output : La in the le: subtree of r plus root r, and Ua

in the right subtree of r plus extra node e
// phase : determine case

if value(r) < value(e) then
case = 

else
case = 
swap value(r) and value(e)

( p, q ) = ( left(r) , right(r) )
for i = , . . . , logn −  do

// phase i

test = ( value(p) > value(q) )
if test == true then

swap values of p and q

if case ==  then
swap the pointers left(p) and
left(q)

else
swap the pointers right(p) and
right(q)

if ( case ==  and test == false ) or ( case ==
 and test == true ) then
( p, q ) = ( left(p) , left(q) )

else
( p, q ) = ( right(p) , right(q) )
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Algorithm : Merging a bitonic sequence to obtain a
sorted sequence
input : Bitonic tree, with root node r and extra

node e, representing bitonic sequence a
output : Sorted tree (produces sort(a) when

traversed in-order)
construct La and Ua in the bitonic tree by 
call merging recursively with left(r) as root and r
as extra node
call merging recursively with right(r) as root and
e as extra node

increasing sorting direction, and it is thus not explicitely
speci8ed. As noted above, the sorting direction must
be reversed in the right branch of the recursion in the
bitonic sorter, which basically amounts to reversing the
comparison direction of the values of the keys, that is,
compare for < instead of > in .

As noted above, the bitonic tree stores the sequence (a, . . . ,an−) in in-order, and the key an− is stored in
the extra node. As mentioned above, an algorithm that
constructs (La,Ua) from a can traverse this bitonic tree
and swap pointers as necessary. 6e index q, which is
mentioned in the proof for 6eorem , is only deter-
mined implicitly. 6e two di7erent cases that are men-
tioned in 6eorem  and Eqs.  and  can be distin-
guished simply by comparing elements a n

 − and an−.
6is leads to . Note that the root of the bitonic

tree stores element a n
 − and the extra node stores an−.

Applying this recursively yields . Note that the bitonic
tree needs to be constructed only once at the beginning
during setup time.

Because branches are very costly on GPUs, one
should avoid as many conditionals in the inner loops
as possible. Here, one can exploit the fact that Rn/a = (a n


, . . . ,an−,a, . . . ,a n

 −) is bitonic, provided a is
bitonic too. 6is operation basically amounts to swap-
ping the two pointers left(root) and right(root). 6e
simpli8ed construction of La and Ua is presented in .
(Obviously, the simpli8ed algorithm now really needs
trees with pointers, whereas Bilardi’s original bitonic
tree could be implemented pointer-less (since it is a
complete tree). However, in a real-world implementa-
tion, the keys to be sorted must carry pointers to some

Algorithm : Simpli8ed adaptive construction of La
and Ua
input : Bitonic tree, with root node r and extra

node e, representing bitonic sequence a
output : La in the le: subtree of r plus root r, and Ua

in the right subtree of r plus extra node e
// phase 

if value(r) > value(e) then
swap value(r) and value(e)
swap pointers left(r) and right(r)

( p, q ) = ( left(r) , right(r) )
for i = , . . . , logn −  do

// phase i

if value(p) > value(q) then
swap value(p) and value(q)
swap pointers left(p) and left(q)
( p, q ) = ( right(p) , right(q) )

else
( p, q ) = ( left(p) , left(q) )

“payload” data anyway, so the additional memory over- 
head incurred by the child pointers is at most a factor 
..) 

Outline of the Implementation 

As explained above, on each recursion level j = 
, . . . , log(n) of the adaptive bitonic sorting algorithm, 
log n−j+ bitonic trees, each consisting of j− nodes, 
have to be merged into log n−j bitonic trees of j nodes. 
6e merge is performed in j stages. In each stage k = 
, . . . , j−, the construction of La andUa is executed on 
k subtrees.6erefore, log n−j⋅k instances of the La /Ua 
construction algorithm can be executed in parallel dur- 
ing that stage. On a stream architecture, this potential 
parallelism can be exposed by allocating a stream con- 
sisting of log n−j+k elements and executing a so-called 
kernel on each element. 

6e La / Ua construction algorithm consists of j− k 
phases, where each phase reads and modi8es a pair 
of nodes, (p, q), of a bitonic tree. Assume that a ker- 
nel implementation performs the operation of a single 
phase of this algorithm. (How such a kernel implemen- 
tation is realized without random-access writes will be 
described below.) 6e temporary data that have to be 
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preserved from one phase of the algorithm to the next
one are just two node pointers (p and q) per kernel
instance.6us, each of the log n−j+k elements of the allo-
cated stream consist of exactly these two node pointers.
When the kernel is invoked on that stream, each kernel
instance reads a pair of node pointers, (p, q), from the
stream, performs one phase of the La/Ua construction
algorithm, and 8nally writes the updated pair of node
pointers (p, q) back to the stream.

Eliminating Random-Access Writes

Since GPUs do not support random-access writes (at
least, for almost all practical purposes, random-access
writes would kill any performance gained by the paral-
lelism) the kernel has to be implement so that itmodi8es
node pairs (p, q) of the bitonic tree without random-
access writes. 6is means that it can output node pairs
from the kernel only via linear stream write. But this
way it cannot write a modi8ed node pair to its original
location from where it was read. In addition, it can-
not simply take an input stream (containing a bitonic
tree) and produce another output stream (containing
themodi8ed bitonic tree), because then it would have to
process the nodes in the same order as they are stored in
memory, but the adaptive bitonic merge processes them
in a random, data-dependent order.

Fortunately, the bitonic tree is a linked data structure
where all nodes are directly or indirectly linked to the
root (except for the extra node).6is allows us to change
the location of nodes inmemory during themerge algo-
rithm as long as the child pointers of their respective
parent nodes are updated (and the root and extra node
of the bitonic tree are kept at well-de8nedmemory loca-
tions).6is means that for each node that is modi8ed its
parent node has to be modi8ed also, in order to update
its child pointers.

Notice that  basically traverses the bitonic tree
down along a path, changing some of the nodes as nec-
essary.6e strategy is simple: simply output every node
visited along this path to a stream. Since the data lay-
out is 8xed and predetermined, the kernel can store the
index of the children with the node as it is being writ-
ten to the output stream. One child address remains
the same anyway, while the other is determined when
the kernel is still executing for the current node. Fig-
ure  demonstrates the operation of the stream pro-
gram using the described stream output technique.

Complexity 

A simple implementation on the GPU would need 
O(log n) phases (or “passes” in GPU parlance) in 
total for adaptive bitonic sorting, which amounts to 
O(log n) operations in total. 

6is is already very fast in practice. However, the 
optimal complexity of O(logn) passes can be achieved 
exactly as described in the original work [], that is, 
phase i of a stage k can be executed immediately a:er 
phase i+  of stage k−  has 8nished.6erefore, the exe- 
cution of a new stage can start at every other step of the 
algorithm. 

6e only di7erence from the simple implementation 
is that kernels now must write to parts of the output 
stream, because other parts are still in use. 

GPU-Specific Details 

For the input and output streams, it is best to apply the 
ping-pong technique commonly used in GPU program- 
ming: allocate two such streams and alternatingly use 
one of them as input and the other one as output stream. 

Preconditioning the Input 

For merge-based sorting on a PRAM architecture (and 
assuming p < n), it is a common technique to sort 
locally, in a 8rst step, p blocks of n/p values, that is, each 
processor sorts n/p values using a standard sequential 
algorithm. 

6e same technique can be applied here by imple- 
menting such a local sort as a kernel program. However, 
since there is no randomwrite access to non-temporary 
memory from a kernel, the number of values that can be 
sorted locally by a kernel is restricted by the number of 
temporary registers. 

On recent GPUs, the maximum output data size of 
a kernel is  ×  bytes. Since usually the input consists 
of key/pointer pairs, the method starts with a local sort 
of -key/pointer pairs per kernel. For such small num- 
bers of keys, an algorithm with asymptotic complexity 
of O(n) performs faster than asymptotically optimal 
algorithms. 

A:er the local sort, a further stream operation 
converts the resulting sorted subsequences of length 
 pairwise to bitonic trees, each containing  nodes. 
6erea:er, the GPU-ABiSort approach can be applied 
as described above, starting with j = . 



Encyclopedia of Parallel Computing “00101” — 2011/4/16 — 13:39 — Page 10 — #11

Co
rre
ct
ed

Pr
oo
f

 A Adaptive Bitonic Sorting

2 6

4

5 1

3

7 0

15 8

12

0 7

3

4 11

2 10

5

14 6

9

13 1

...

Root spare Root spare Root spare...
Phase 0
kernel

p0 q0

p0 q0 p0 q0 p0 q0

p1 q1

p1 q1

p2 q2 p2 q2 p2 q2

p1 q1 p1 q1

p1 q1 p1 q1 p1 q1p1 q1 p1 q1

p0 q0 p0 q0 p0 q0 p0 q0 p0 q0...

7 > 0 4 < 11 13 > 1

root   spare ...root   spare root   spare

2 6

4

5 1

3

0 7

15 8

12

0 7

3

4 11

2 10

5

14 6

9

1 13

...

...

0 1

5 1

3

2 6

4

0 7

15 8

12

0 7

3

4 11

14 6

9

2 10

5

1 13

...

Phase 1
kernel

...

3 < 4 12 > 3 9 > 5

... p0 q0

p1 q1 p1 q1 p1 q1

p0 q0 p0 q0...

5 1

3

2 6

4

0 7

15 8

3

0 7

12

4 11

14 6

5

2 10

9

1 13

...

...

3 12 5 9

5 1

3

2 6

4

0 7

0 8

3

15 7

12

4 11

2 6

5

14 10

9

1 13

...

...
Phase 2
kernel

5 > 2 8 > 7 6 < 10

...

...

2 1

3

5 6

4

0 7

0 7

3

15 8

12

4 11

2 6

5

14 10

9

1 13

...

p2 q2 p2 q2 p2 q2...

Adaptive Bitonic Sorting. Fig.  To execute several instances of the adaptive La/Ua construction algorithm in parallel,
where each instance operates on a bitonic tree of  nodes, three phases are required. This figure illustrates the operation
of these three phases. On the left, the node pointers contained in the input stream are shown as well as the comparisons
performed by the kernel program. On the right, the node pointers written to the output stream are shown as well as the
modifications of the child pointers and node values performed by the kernel program according to 

The Last Stage of EachMerge

Adaptive bitonic merging, being a recursive procedure,
eventually merges small subsequences, for instance of
length . For such small subsequences it is better to use
a (nonadaptive) bitonic merge implementation that can
be executed in a single pass of the whole stream.

Timings

6e following experiments were done on arrays consist-
ing of key/pointer pairs, where the key is a uniformly
distributed random -bit 9oating point value and the
pointer a -byte address. Since one can assume (without
loss of generality) that all pointers in the given array are

unique, these can be used as secondary sort keys for the 
adaptive bitonic merge. 

6e experiments described in the following com- 
pare the implementation ofGPU-ABiSort of [, ] with 
sorting on theCPUusing theC++ STL sort function (an 
optimized quicksort implementation) aswell as with the 
(nonadaptive) bitonic sorting network implementation 
on the GPU by Govindaraju et al., called GPUSort []. 

Contrary to the CPU STL sort, the timings of GPU- 
ABiSort do not depend very much on the data to be 
sorted, because the total number of comparisons per- 
formed by the adaptive bitonic sorting is not data- 
dependent. 
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n CPU sort GPUSort GPU-ABiSort

32,768 9–11 ms 4 ms 5 ms
65,536 19–24 ms 8 ms 8 ms
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1,048,576 418–477 ms 173 ms 135 ms
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Adaptive Bitonic Sorting. Fig.  Timings on a GeForce  system. (There are two curves for the CPU sort, so as to
visualize that its running time is somewhat data-dependent)

Table  shows the results of timings performed on
a PCI Express bus PC system with an AMD Athlon-
 + CPU and an NVIDIA GeForce  GTX
GPU with  MB memory. Obviously, the speedup
of GPU-ABiSort compared to CPU sorting is .–.
for n ≥ . Furthermore, up to the maximum tested
sequence length n =  (= ,, ), GPU-ABiSort is
up to . times faster than GPUSort, and this speedup is
increasing with the sequence length n, as expected.

6e timings of the GPU approaches assume that the
input data is already stored in GPU memory. When
embedding the GPU-based sorting into an otherwise
purely CPU-based application, the input data has to be
transferred from CPU to GPUmemory, and a:erwards
the output data has to be transferred back to CPUmem-
ory. However, the overhead of this transfer is usually
negligible compared to the achieved sorting speedup:
according to measurements by [], the transfer of one
million key/pointer pairs from CPU to GPU and back
takes in total roughly ms on a PCI Express bus PC.

Conclusion

Adaptive bitonic sorting is not only appealing from a
theoretical point of view, but also from a practical one.
Unlike other parallel sorting algorithms that exhibit
optimal asymptotic complexity too, adaptive bitonic
sorting o7ers low hidden constants in its asymptotic
complexity and can be implemented on parallel archi-
tectures by a reasonably experienced programmer. 6e
practical implementation of it on a GPU outperforms
the implementation of simple bitonic sorting on the

same GPU by a factor ., and it is a factor  faster than 
a standard CPU sorting implementation (STL). 

Related Entries 

!AKS Network 
!Bitonic Sort 
!Lock-Free Algorithms 
!Scalability 
!Speedup 

Bibliographic Notes and Further 

Reading 

As mentioned in the introduction, this line of research 
began with the seminal work of Batcher [] in the 
late s, who described parallel sorting as a network. 
Research of parallel sorting algorithms was reinvigo- 
rated in the s, where a number of theoretical ques- 
tions have been settled [, , , , , ]. 

Another wave of research on parallel sorting ensued 
from the advent of a7ordable, massively parallel archi- 
tectures, namely, GPUs, which are, more precisely, 
streaming architectures. 6is spurred the development 
of a number of practical implementations [, –, , 
, ]. 
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